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Abstract:  

Laser Induced Breakdown Spectroscopy (LIBS) can be used for the chemical characterization of 

glass to provide evidence of an association between a fragment found at a crime scene to a source 

of glass of known origin. Two different laser irradiances, 266 nm and 1064 nm, were used to 

conduct qualitative and quantitative analysis of glass standards. Single-pulse and double-pulse 

configurations and lens-to-sample-distance (LTSD) settings were optimized to yield the best laser-

glass coupling. Laser energy and acquisition timing delays were also optimized to result in the 

highest signal to noise ratio. The crater morphology was examined and the mass removed was 

calculated for both the 266 nm and 1064nm irradiations. The analytical figures of merit suggest 

that the 266 nm and 1064 nm wavelengths are capable of good performance for the forensic 

chemical characterization of glass. The results presented here suggest that the 266 nm laser 

produces a better laser-glass matrix coupling resulting in a better stoichiometric representation of 

the glass sample. The 266 nm irradiance is therefore recommended for the forensic analysis and 

comparison of glass samples.  

* Corresponding Author: Jose Almirall (almirall@fiu.edu) 

 

 

 



1. Introduction 

Glass is a commonly encountered type of trace evidence found at many crime scenes.  Glass fragments can 

provide forensic investigators valuable information of association to a crime and often link a suspect to the scene of 

a crime. When someone breaks glass as in the case of a hit-an-run accident, for example, a number of tiny fragments 

may be transferred to both the victim and the driver.  The fragments can be used as evidence associating the 

individuals to the event.  Since much of the glass formulations are very similar in chemical composition a highly 

discriminating technique is required to distinguish between similar fragments that have originated from different 

manufacturing sources.  

Numerous elemental analysis techniques have been employed for the discrimination and chemical 

characterization of glass.   These techniques include spark source mass spectrometry [1], atomic emission 

spectroscopy [2,4], atomic absorption spectroscopy (AAS) [3],  x-ray fluorescence (XRF) [3,4], neutron activation 

analysis (NAA) [5], scanning electron microscopy (SEM) coupled to both energy dispersive spectroscopy (EDS) 

and wavelength dispersive spectroscopy [6], particle induced x-ray emission (PIXE) [6], inductively coupled plasma 

atomic emission spectrometry (ICP-AES) [3,4,7], inductively coupled plasma mass spectrometry (ICP-MS) [8], and 

laser ablation-ICP-MS (LA-ICP-MS) [9].  

   These mature techniques are known for their advantages but also are subject to certain limitations. The use 

of laser ablation as a sample introduction system for ICP-MS has simplified the direct analysis of solid samples such 

as glass and is regarded as the “gold standard” for the discrimination between similar glass samples known to 

originate from different sources, or to determine if the glass samples are indistinguishable from the source of origin.  

While excellent analytical performance results from the elemental analysis of glass evidence with LA-ICP-MS, this 

complex and expensive instrumentation requires a well-trained operator and a pre-determined element menu prior to 

analysis.  LA-ICP-MS is out of reach for many forensic laboratories due to the high cost of acquisition and operation 

of this instrumentation. There is a need to develop a less expensive alternative to LA-ICP-MS that is also a robust, 

precise and accurate method to evaluate the chemical characterization of trace evidence materials that can be 

encountered in the forensic laboratory.  



 LIBS is an emerging method of atomic emission spectroscopy proving to be a viable alternative for the 

elemental characterization of forensic glass samples [10,11]. The advantages of LIBS have been clearly established 

and include the ability for real time analysis, little-to-no sample preparation or destruction, ease of use, low cost, and 

simultaneous multi-element detection without the need to know the element menu to be analyzed.  Many variables 

such as laser power, laser wavelength, gate delay, integration time, and sample matrix will influence the precision 

and accuracy of LIBS measurements.  LIBS is a comparable method to LA-ICP-MS in that small sample sizes may 

be analyzed with good precision but there is no, as of yet, agreement on the optimum operation conditions that result 

in the best quantitative data.   

 Commercial laser ablation systems are now equipped with shorter wavelengths, i.e. 193nm, 213 nm or 266 

nm because it has been shown that these UV LA systems provide better laser-sample coupling resulting in increased 

mass removal [12] compared to IR ablation, better crater morphology and improved reproducibility of signal, 

demonstrating that the shorter wavelengths provide a more controlled ablation rate [12,13].  For this reason, our 

group has been interested in the investigation and comparison between the use of UV (266 nm) and the more widely 

used (1064 nm) wavelength for LIBS analysis. Several researchers have reported some results from the use of 

different wavelengths [14] ranging from the plasma characteristics such as temperature and density [14] and plasma 

formation [15] to fractionation [12], laser-sample coupling [12,16], and quantification of analytical results [14,17].  

The coupling of the laser energy to the sample is clearly affected by the irradiation wavelength.  Previous studies 

have shown that the UV wavelength can improve the coupling efficiency when compared to the longer wavelengths, 

i.e. 532 nm and 1064 nm [14,12]. 

  The focus of this study was to investigate the effects on varying the irradiation wavelength on the analytical 

results for forensic glass analysis. Quantification of the trace elements Sr, Ba, and K, were determined for both 266 

nm and 1064 nm under varying conditions.  Although LIBS produces an information-rich spectrum, only a few 

elements will actually provide the forensic investigator with useful discrimination information for comparison 

purposes.  The variations of the major constituents in glass, i.e. Si, Ca, or Na, do not discriminate between similar 

formulations [18] but the comparison of the trace element composition, usually arising from impurities from raw 

materials or due to the slight differences between glass manufacturing plants, do provide excellent discrimination 

between glass fragments of different manufacturing origin.  



2. Experimental 

The LIBS instrumentation presented in this work consisted of different single-pulse and double-pulse wavelength 

configurations.  The LIBS system built in our laboratory consists of a Q-switched Nd:YAG NewWave Research 

Tempest laser (New Wave Research, Fremont, CA) operating at the fourth harmonic (266 nm) and a second 

Nd:YAG  Big Sky laser (Big Sky, MT) operating at the fundamental wavelength of 1064 nm, both having pulse 

widths of  3-5 ns full width half max.  Flashlamps and q-switches were both externally controlled by a Berkeley 

Nucleonics (San Rafael, Ca) delay generator model 656.  Beam expanders were used to enlarge the beams from ~4 

mm to nearly 12 mm using a Galilean telescope.  The beams were then focused at a normal incidence to the sample 

through a plano-convex lens with a focal length of 150 mm (see Fig. 1) with a 900 viewing angle to the laser.   

 To ensure representative sampling and to account for any heterogeneity, each glass standard was analyzed 5 

times at different locations. Both single-pulse and double-pulse spectra were collected as a result of 100 laser shots 

with the accumulation of the last 50 shots used to generate the spectra for analysis conducted at atmospheric 

pressure in air.  In order to gain the best reproducible optical emission spectra possible, both the 266 nm and the 

1064 nm experiments were optimized for laser power, lens-to-sample surface-distance (LTSD), gate delay, and 

integration time. Both laser energies for the single-pulse ablation were held at constant values throughout the 

experiments at 29 mJ and 47 mJ for the 266 nm and the 1064 nm laser, respectively.  The laser was focused 1.30 

mm into the sample surface during the 266 nm experiment and 0.50 mm into the surface for the 1064 nm 

experiment.  

 A Scanning Electron Microscope (SEM) Philips XL 30 with EDX detector (Philips, The Netherlands and 

EDAX, USA, respectively) was used for the imaging of the craters created by UV and IR ablation.   The amount of 

mass ablated was calculated using the density and volume.  Using a glass density of 2.5 g/cm3, the volume was 

converted to nanograms removed. 

 The laser beams are focused perpendicular and parallel to the sample to create either single-pulse ablation or 

double-pulse pre-spark or plasma reheating schemes.  The geometric configurations for double-pulse LIBS were 

optimized as follows; the orthogonal configuration included one beam perpendicular to the surface while the other 

pulse was parallel to the surface.  During pre-spark experiment, the IR beam was focused 0.75 mm above the sample 



surface at 160 mJ creating a spark in air followed 7 µs later by the perpendicular UV ablation pulse at 29 mJ. In the 

plasma reheat configuration, the UV ablation beam was pulsed at an energy of 27 mJ, followed 400 ns later by a 35 

mJ IR beam, focused 0.75 mm above the sample to reheat the plasma.   

 Optical emissions from the plasma were acquired from the side (90°) by a pair of plano-convex lenses (ƒ =75 

mm) onto a fiber with a diameter of 50 µm that was coupled to the entrance slit of an Andor Mechelle 5000 

spectrometer equipped with an Andor iStar intensified CCD camera using a 1024 X 1024 chip. The optimized gate 

delays for both the 266 nm and 1064 nm experiments were 1.2 µs, while the optimized integration time was 3.5 µs 

and 11.0 µs for the 266 nm and the 1064 nm wavelengths, respectively.  The broadband detector captured the 

spectral range between 200-950 nm with a resolution of ~ 5000.  Due to broadband spectral analysis, the repetition 

rate for the spectrometer was ~ 0.67 Hz.  

 Analytical glass standards from National Institute of Standard and Technology (NIST) 614, 610, 612, 1831 

and Bundeskriminalamt (BKA) glass reference standards FGS 01 and FGS 02 were used for development of the 

analytical protocols and to determine the precision, accuracy and repeatability of the LIBS analysis.  

	  

Fig. 1  Simple Single-Pulse and Double-Pulse LIBS schematic 

	  

3.  Results and Discussion 



Quantitative spectral analysis by LIBS involves relating the LIBS signal produced to the concentration of the 

selected element(s) in the matrix.  For optimized performance, the experiments were conducted to study the effects 

of changing the various parameters.    

3.1 Crater Morphology. 

 LTSD is a critical parameter for LIBS measurements.  A change in the depth of focus can affect the LIBS 

signal and reproducibility. It was found that by defocusing the beam, forcing the laser to focus into the surface, the 

reproducibility and precision of the LIBS emission signals improved.  It was then determined a requirement to focus 

the beam into the surface for the 1064 irradiance, to prevent shattering and cracking of the glass. The optimal LTSD 

determined for both the 1064 nm and 266 nm wavelengths were 0.50 mm and 1.30 mm focused into the sample, 

respectively.  

  LIBS typically removes mass from the sample in the ng-µg range, classifying it as a surface sampling 

technique.  However, multiple pulses at the same location can be used to progressively ablate the surface, thereby 

removing more material and permitting depth profiling or bulk analysis of the sample. Researchers have reported 

that the 266 nm ablation removes more mass than the 532 nm or 1064 nm [14,16,17] ablation experiments, which 

may be due to the better energy coupling provided by the UV combined with less plasma shielding.  The crater 

diameter has been proven independent of the sample matrix, while the crater depth is dependent on sample matrix 

[19]. It has been theorized that more mass ablated with minimal sample heating can provide a more stoichiometric 

sampling [12].  It has been demonstrated that the IR plasma is hotter [20], which will increase the plasma shielding 

and reduce the amount of the IR energy that can be transferred to the sample surface [13].  

 Crater morphology produced at these LTSDs resulted in a diameter of 75 µm and depth of 70 µm for the 266 

nm laser and a diameter of  37 µm and depth of 26 µm for the 1064 nm laser. The total mass removed by the 266 nm 

ablation was found to be ~790 ng, approximately ten times higher than that of the 1064 nm, 81 ng.  It was 

determined that the differences of the mass removed between the single and double-pulse LIBS ablations was 

negligible, this is in agreement with previous research conducted by Santagata et al [21].   However, this contradicts 

research reported by Scaffidi et al., where they reported an eight to ten fold increase in mass ablated using the 

orthogonal double-pulse configuration [22].   

 The crater morphology can be appreciated at high 1000 times magnification as shown in Fig. 2, 

demonstrating the differences for 100 shot ablations from the 266 nm ablations (Fig 2a) compared to the 1064 nm 



ablations (Fig 2b).  Investigation of the crater morphology also reveals a more uniform crater produce by the 266 nm 

laser, which may translate to better precision in LIBS measurements.    

  

 

    

 Fig. 2.  2a) Crater formed using a 266 nm laser on NIST glass stanard 1831, 2b) Crater formed using a 1064 nm laser on NIST  
  glass standard 1831  

 

3.2  Calibration Curves 

Quantitative analysis by LIBS is still difficult and many quantification methods have been proposed for chemical 

analyses.  One of the key reasons for the proposal of different methods is due to the lack of standard reference 

materials.  However, the availability of glass standard reference materials permits calibration curves for the 

quantitative chemical analyses and have been proven effective for many years.  

Construction of the calibration curves were produced by the line intensities (max counts of intensity minus the 

background). The calibration curves of the different atomic lines of the same element were very reproducible (see 

the error bars in figures 3-5) and were utilized for the quantification of trace elements in glass.  All chosen spectral 

2a.	  	  

2b.	  	  



lines have minimal spectral interferences.  Each point on the calibration curves represent an average of five 

replicates, with the second 50 of 100 shots being averaged.  The vertical error bars are represented as ± 1 standard 

deviation calculated from the 5 replicates. The five glass standard reference materials and their corresponding 

concentrations are listed in Table 1.  NIST glass standard 1831 is a float glass formulation and was analyzed twice 

for this study, with the second set of measurements treated as an “unknown” sample for comparison purposes. 

Limits of detection (LOD) and limits of quantitation (LOQ) were calculated according to LOD=3sB and LOQ=10sB, 

where sB is the standard deviation of the background, which is taken as close to the emission line as possible without 

encountering spectral interferences.   

 Trace elements K I 766.49 nm, Ba II 493.41 nm, Sr II 407.77 nm and Ti II 336.12 nm, were chosen due to 

previous work by our group, demonstrating the high discriminating power of these elements in the glass matrix [10].    

Glass  

SRM 

 

Sr 

 

Ba 

 

Al 

 

K 

 

Mg 

 

Ti 

1831 89 32 6381 2738 2116 114 

610 497 424 10006 486 465 434 

612 76 38 11165 66 77 48 

FGS 1 57 40 1500 920 23900 69 

FGS 2 253 199 7400 4600 23400 326 

Table 1. Certified concentration of glass standards reported in µg/g (ppm) 

 

3.2.1 Single-Pulse LIBS  

Single-pulse LIBS spectra were acquired as described by using both by 266 nm and 1064 nm lasers.  The 

experimental conditions that provided the highest precision and accuracy were determined and used throughout the 

study. 

 The energy of the 266 nm laser was held constant at 29 mJ, while the 1064 nm laser was held at 47 mJ.  It 

was found that at these energies the reproducibility of the experiments increased and limiting the IR wavelength to 

47 mJ prevented cracking and damaging of the glass during ablation, see Fig. 3.  A detector delay of 1.20 µs was 

used, which allowed for the decay of background continuum and production of sharp emission lines.  



 

  

 

 Fig. 3. illustrates calibration curves produced by single-pulse 266 and 1064 nm.  Each measurement 

corresponds to the intensity of the emission line of interest obtained with an accumulation on the detector of the 

second 50 accumulation of 100 laser shots. Both configurations demonstrate good correlation with most R2 values 

being greater than 0.990.   It has been demonstrated in previous research that IR irradiances show greater 

enhancement with ionic emission lines [23], this is witnessed when comparing K I 766.5 nm and Sr II 407.7 nm.  

However, contrary to this observation, Ba II 493.4 emitted a higher signal when irradiated with the 266 nm laser, 

than with the 1064 nm.  

 As mentioned earlier in this paper, NIST 1831 standard was chosen and analyzed twice, the second time 

being treated as an “unknown” sample.  As both methods show good correlation, the UV irradiance demonstrated 

better precision for the K and Sr lines.  The IR irradiance proved to have lower limits of detection, however, in trace 

elemental analysis of glass, the LOD obtained by UV LIBS ablation would provide sufficient sensitivity for the 

chemical characterization of glass, see Table 2.   

Fig. 3. NIST 1831 glass. The damage of glass by cracking and 
irregular crater shapes occur by too high of IR laser power 
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Fig. 3. A)  Single-pulse 1064 nm calibration curves for K I 766.5 nm; B) Single-Pulse 
266 nm calibration curve for K I 766.5 nm; C)  Single-pulse 1064 nm calibration curves 

for Sr II 407.7; D) Single-Pulse 266 nm calibration curve for Sr II 407.7; E)  Single-
pulse 1064 nm calibration curves for Ba II 493.3; F) Single-Pulse 266 nm calibration 

curve for Ba II 493.3 nm 

	  



3.2.2  Double-Pulse LIBS   

Double-pulse LIBS has gained merit over the recent years.  Improvements in the figures of merit by double-laser 

pulse configurations have contributed to better sensitivity and gain signal for LIBS analyses [24,25].  Several 

double-pulse geometric configuration approaches have been used consisting of either one laser [26], or two different 

lasers [27] to encompass a double-pulse LIBS setup.   

 Orthogonal pre-spark and plasma reheat were the two configurations used during this work.  Optimal 

separation time between the two laser pulses was determined by plotting the LIBS emission intensity versus the 

delay time.  The main objective of this study was not given to the highest intensity enhancement, but rather to 

increased precision and accuracy.  Demonstrated here in figures 3 and 4, an intensity decrease is seen from single-

pulse to double-pulse orientation.  This event was also reported by Gautier et al. [24], when they observed lower line 

emissions using UV ablation, from elements with lower excitation energies of approximately 4 eV, in the double-

pulse reheating approach when compared to single-pulse.  The elements of interest investigated here all have lower 

excitation energies of 1.6, 3.0, and 2.5 eV for K I 766.5 nm, Sr II 407.7 nm, and Ba II 493.4 nm, respectively, which 

could account for the witnessed decrease in intensity.   

 Double-pulse plasma reheat has been attributed to higher plasma temperatures and electron densities due to 

the larger plasma size after the second plasma reheat beam, which would allow for longer integration times.   As can 

be seen by Fig. 4., all correlation coefficients are above 0.990, demonstrating very good linearity.  The precision 

demonstrated by the plasma reheat scheme is moderately lower than that by single-pulse UV, which has also been 

reported by Scaffidi et al. [28], and comparable to that of single-pulse IR.   As emission enhancement is not seen, 

however, most LODs have decreased. The LOD for K I 766.5 nm and Sr II 407.7 nm have decreased from the 

single-pulse value of 5.93 and 4.10 ppm to 4.30 and 3.17 ppm, respectively, showing an increase in the double-pulse 

plasma reheat sensitivity, see Table 2. 



 

 

 

Fig. 4.  Calibration curves for double-pulse plasma reheat with  266 nm ablation and 1064 nm plasma reheat for A) K I 766.5 nm B) Sr II 
407.7 nm  and C) Ba II 493.4 nm 
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shielding for the ablation pulse [29,30].  Higher sensitivity was also evident in the double pulse pre-spark 

configuration, than when compared to all other experimental data, due to the resolution of emission line Ti II 336.12 

nm.  This line was pronounced and a linear correlation achieved, see Fig.5D, while in the other configurations the Ti 

II line was not resolved well enough for calibration. As seen in the plasma reheat configuration the linearity between 

concentration and intensity proves well, achieving correlation coefficients most greater than 0.990.  However, the 

pre-spark shows less precision than that demonstrated by either the UV/IR single-pulse or the plasma reheat, see 

Table 2.     
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Fig. 5.  Calibration curves for double-pulse IR pre-spark with  266 nm ablation for A) K I 766.5 nm,  B) Sr II 407.7 nm  C) Ba II 493.4 
nm and D) Ti II 336.12 
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Method Sample Peak  (nm) Precision (%) Bias (%) LOD (ppm) LOQ (ppm) 

SP UV 1831 K I 766.5 8.23 12.15 5.93 19.77 

SP UV 1831 Sr II 407.7 5.80 16.82 4.10 13.68 

SP UV 1831 Ba II 493.4 10.83 9.48 2.25 7.51 

DP Reheat 1831 K I 766.5 3.61 14.82 4.30 14.34 

DP Reheat 1831 Sr II 407.7 8.43 5.89 3.17 10.56 

DP Reheat 1831 Ba II 493.4 12.38 19.95 1.72 5.73 

DP PS 1831 K I 766.5 10.45 19.06 3.77 12.58 

DP PS 1831 Sr II 407.7 30.38 47.74 3.02 10.07 



 
 
 

 

 

 

 Table 2.  Figures of merit for the single-pulse 266 nm (SP UV), double-pulse plasma reheat (DP Reheat), double-pulse 1064 nm pre-
 spark (DP PS), and single-pulse 1064 nm (SP IR) 

 

  The reproducibility of each point in the calibration curve was 10-15%. The accuracy of the analysis was 

evaluated to be ~10%.  The determined limits of detection for metal ions in this work were certainly comparable, if 

not lower with those reported in other publications.  Kurniawan et al. performed quantitative analysis on glass 

samples and reported the LODs for Ba, K, and Ti were 190 ppm, 190 ppm, and 410 ppm, respectively [31].  Ismail 

et al. reported the LOD of Ti to be 100 ppm for single-pulse and 10 ppm for double-pulse, Yamamoto et al. detected 

Ba and Sr in toxic soil and produced a LOD of 265 ppm and 42 ppm, respectively, and Cremers et al. detected Ba in 

soil to have an LOD of 26 ppm [32-34].  This exhibits the evolution LIBS is making as a choice analytical technique 

in the forensic science community.    

4. Conclusions 

The LIBS technique has increasingly gained merit as a competitive analytical tool for surface analysis, depth 

profiling and bulk analysis of solid. In the case of forensic glass analysis, LIBS was determined to provide the same 

power of discrimination between different glass sources as either µXRF or LA-ICP-MS [10].  In the current work, 

correlation coefficients of > 0.990 were achieved for calibration curves for the trace elements analyzed in the range 

between 32 and 4600 ppm. Precision and accuracy for the quantitative analysis of standards ranged from as good as 

4.5% RSD for the precision of 1831 NIST glass at 32 ppm for the measurement of Ba and an accuracy of 5.9% bias 

but more typically resulting in 9-10 %RSD precision and 10 % bias for most elements of interest in these glasses 

both the UV and IR experiments and the single and double-pulse experiments. The IR ablations resulted in typically 

less emission intensities an indication that less mass was ablated when IR was used. This was corroborated with 

mass removal calculations.  

 The plasma shielding was demonstrated to be less with UV irradiance and the laser-sample energy coupling 

DP PS 1831 Ti II 336.1 31.67 42.13 11.03 36.77 

SP IR 1831 K I 766.5 9.13 16.50 4.07 13.56 

SP IR 1831 Sr II 407.7 8.26 8.98 3.28 10.92 

SP IR 1831 Ba II 493.4 4.51 39.68 1.98 6.59 



was more efficient with the UV, resulting in better precision and accuracy in most, but not all experimental 

configurations.  The UV irradiation produced a more uniform crater, translating to better precision from better signal 

reproducibility. The craters formed resulting from IR irradiance, even when higher power than UV was used, 

resulted in less mass ablated and severe cracking and damage to the sample surface, in comparison to the UV. 

 The LODs for the elements of interest in forensic glass analysis were adequate for the proper characterization 

and comparison of glass using any of the UV and IR configurations used in this study. The same emission lines 

where used in the comparisons for all configurations and, under these comparison conditions, it was concluded that 

the use of 266 nm irradiation was recommended for the forensic analysis and comparison of glass with single-pulse 

experiments providing very good analytical data and minimal sample damage.   
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